CONSOLIDATED SUBSCRIPTION - BASED LAST MILE DELIVERY

Supervisors: Dr. Nourinejad and Dr. Park

By: Behnaz Naeimian
Lassonde YOR K U

1. Current Overview

Convenience \longrightarrow Online grocery shopping
22.2 \% Canadians intend to regularly purchase grocery or

Frequency of online grocery shopping

Grocer Delivery Options

Grocers	Price Per Deliver (CAD)	Cost Restrictions (CAD)	Premium Delivery Time Fees (CAD)
Walmart	$\$ 7.97$	$\$ 35$	$\$ 12.94$
metro Loblaws Metro	$\$ 7.95$	$\$ 0$	$\$ 9.99-\$ 13.99$

Food Delivery Examples

HELLO FRESH

FRESH PREP

INSTACART

Preferences

 in terms of Dates

Lassonde Yor K U

2.

The Problem Statement

Addressing the high cost
of delivery for online grocery shoppers

Same-day Delivery vs Consolidated Delivery

Day 1

LAASSONDE YORKU

Day 1

${ }^{3.0}$ Proposing Solution

Brick \& Mortar

Consolidated Delivery

Is it Realistic?

Garbage is collected on a weekly basis on specific days

3.2 Subscription Plans

Plan 1	Plan 2
Subscription fee \$	Subscription fee \$
P1 per month	P $_{2}$ per month
No fee per delivery	Pay $\$ k_{2}$ per delivery
$\left(k_{1}=0\right)$	

Pay $\$ k_{3}$ per
delivery

4.0

Methodology

- Going over the:
- Demand
- Travel Distance
- Profit Model

${ }^{4.1}$ Demand Function

- The fitted data of frequency of online grocery shopping into a lognormal distribution.

$$
(\mu=1, \sigma=1)
$$

- Assumption: People with preferred frequency less than or equal to our offering frequency will subscribe to our service.

42 Inventory Routing

- We used continuous approximation to estimate the distance
- We assume that depot is in the center of a circular area
- The circular area is divided into slices
- Residents on each slice are served by a vehicle

4.3 Profit Model

Objective function:

$$
\max _{f} P R O F I T=\text { Revenue }- \text { Cost }
$$

Revenue:

- Subscription Fee \times Number of Subscribers
- Price of Delivery \times Number of Deliveries

Cost:

- Total Delivery Cost

${ }^{5.0}$ Results

Plan 1

Plan 2

Plan 3

Plan	features		Freq	Profit	Cost	$\frac{\text { Cost }}{\text { Profit }}$
1	$\mathrm{P}_{1}=110$	$\mathrm{k}_{1}=0$	4	26	44	1.7
2	$\mathrm{P}_{2}=55$	$\mathrm{k}_{2}=30$	6	26	67	2.6
3	$\mathrm{P}_{3}=0$	$\mathrm{k}_{3}=61$	30	26	229	8.8

5.1

Results

Limited range of frequencies to highlight the optimal value in curve

Decreasing parameter c (transportation cost \$ per km)

5.2
 Results

Solving Travel Salesman Problem with customers being served based on probability of the specific day of service

Service Day	Probability of people joining	Average Distance in TSP	Average distance per customer
Saturday	18%	32.75	18.2
Sunday	17%	31.63	18.6
Saturday + Sunday	35%	$43.03(-0.33 \%)$	$12.3(-0.33 \%)$

THANK YOU!

Any Questions?

