### A Freight Emissions Monitoring Approach for Freeways in the GTHA

May 11<sup>th</sup>, 2023

#### **CARLOS RIVERA** MATTHEW ROORDA

City Logistics for the Urban Economy





## AGENDA

- Context
- Objective and Project Approach
- Data Sources
- Methodology
- Case Study: Highway 401
- Lessons learned and chief insights





## Context

- Data has been an effective asset to assist passenger and freight vehicle operators in their transportation decisions (route choice, mode choice, etc.)
- The massive datasets collected are of interest to transportation agencies because they have the potential to characterize their networks using datadriven measures (Calabrese et al., 2013; Comi et al., 2014; Gonzalez-Feliu & Mercier, 2013)
- The Freight Data Warehouse (FDW), part of the Smart Freight Centre (SFC), focuses on enabling freight analytics, modeling, monitoring and research





## **Context: FDW User Portal**







### **Context: User Access Procedure**



Data access request submitted to the FDW

> Check data classification

Share

Revise

CLUE

## Objective and project approach

- Objective: Design a methodology for a visualization service so users can view up-to-date representations of commercial vehicle greenhouse gas emissions and air contaminants on freeways in the GTHA
  - by time of day, by roadway link, by vehicle class
- Approach: Data fusion project to combine different data sources.
  - Four main data sources:
    - Traffic speed data from Here
    - Traffic volume data: (sample) permanent counting stations
    - Emission factors
    - Vehicle classification data





## Data Sources (I)





E

## Data Sources (II)

- Sample of permanent counting stations
  - Highway 401 [Toronto]
  - Queen Elizabeth Highway
    [Mississauga, Hamilton]
  - Highway 400 [Toronto]
  - Highway 404 [Toronto]
- 644 in total; 335 along Highway 401







## Data Sources (III)



|       | Rural        |                         | Urban        |
|-------|--------------|-------------------------|--------------|
| Speed | Unrestricted | <b>Urban Restricted</b> | Unrestricted |
| (mph) | (g/mile)     | (g/mile)                | (g/mile)     |
| 5     | 1052.52      | 1042.67                 | 1052.52      |
| 10    | 647.74       | 634.50                  | 647.74       |
| 15    | 512.82       | 501.40                  | 512.82       |
| 20    | 443.48       | 416.77                  | 443.48       |
| 25    | 398.10       | 373.24                  | 398.10       |
| 30    | 355.53       | 345.33                  | 355.53       |
| 35    | 337.94       | 335.80                  | 337.94       |
| 40    | 327.82       | 329.67                  | 327.82       |
| 45    | 320.12       | 324.89                  | 320.12       |
| 50    | 314.27       | 317.94                  | 314.27       |
| 55    | 312.26       | 311.41                  | 312.26       |
| 60    | 313.90       | 308.71                  | 313.90       |
| 65    | 318.92       | 316.57                  | 318.92       |
| 70    | 332.46       | 332.43                  | 332.46       |
| 75    | 352.58       | 352.58                  | 352.58       |





## Methodology

CLUE



## Case Study: Greenhouse Gas Emissions of Freight Vehicles







## Lessons learned and chief insights

- Developed a methodology that uses available data sources and data fusion techniques to visualize GHG and air contaminants on freeways
- The methodology was developed to rely on data that are broadly or commonly available in other jurisdictions, and can therefore be broadly transferable
  - Potential for implementation at an urban, regional, or nationwide scale
- The methodology can be used to have a regularly updated estimation of GHG and air contaminant emissions, if the speed and volume input databases are regularly updated



## Lessons learned and chief insights

- Notable differences in emissions occur throughout the day, which are linked to the truck volume as well as the congestion in the GTHA network.
- Limitations of the proposed methodology are related to the quality and restrictions of the data.
- Potential next steps based on this research include the operationalization of a visualization service of GHG emissions and air pollutants using the methodology developed in this project.



## Acknowledgements

- Transport Canada
- The Region of Peel
- Natural Science and Engineering Research Council of Canada (NSERC)
- Governance Team of the SFC for their participation in the initiative





# Thanks!!

#### QA? carlos.rivera@utoronto.ca



